INDIAN MARITIME UNIVERSITY

(A Central University Government of India)

END SEMESTER EXAMINATIONS-June/July 2019

B.Tech (Marine Engineering)

Semester-III

Computational Mathematics (UG11T3301)

Date: 09-07-2019

Duration: 3 hrs

Maximum Marks: 100
Pass Marks: 50

Note: i. Use of approved type of scientific calculator is permitted. ii. The symbols have their usual meaning.

Section-A ($\mathbf{3 \times 1 0} \mathbf{x} \mathbf{3 0}$ Marks)

(All Questions are Compulsory)

Q. 1 (a) Fit the linear equation $v=a+b \theta$ with the following values of v and θ.

$v=$	0	5	10	15
$\theta=$	1.80	1.45	1.18	1.00

(b) For a given set of (x, y) values, how would you fit the curve $y=a x^{b}$ using principle of least square method.
(c) Complete the truth table for the following Boolean functions :

p	q	\bar{p}	\bar{q}	$\bar{p} \vee \bar{q}$	$p \vee q$	$(\bar{p} \vee \bar{q}) \wedge(p \vee q)$
0	0					
0	1					
1	0					
1	1					

(d) Derive the Newton's forward interpolation formula using the shifting operator E .
(e) Use Regula-Falsi method to find the real root of $x^{3}-3 x+4=0$ upto two iterations only.
(f) Evaluate $\Delta^{10}\left[(1-x)\left(1-2 x^{2}\right)\left(1-3 x^{3}\right)\left(1-4 x^{4}\right)\right]$, if the interval of differencing is 2.
(g) The two regression lines between two variables are $x=0.7 y+5.2$ and $y=0.3 x+2.8$. Calculate the correlation coefficient.
(h) Simplify the Boolean expression $(y \vee x) \wedge(y \vee z) \wedge\left(y \vee z^{\prime}\right)$.
(i) Evaluate $\int_{-3}^{3} x^{2} d x$ using trapezoidal rule taking $h=1$ and compare your result with the exact value of the integral.
(j) Draw a binary search tree to sort the random numbers $2,6,3,1,9,7,4$, 10,8,5.

Section-B (5 $\times 14=70$ Mark)

(Answer any 5 of the following)

Q. 2 (a) In Boolean algebra show that $\left\{\left(x \vee y^{\prime}\right) \wedge(y \vee z)\right\} \vee\left\{(x \vee z) \wedge\left(y \vee z^{\prime}\right)\right\}=x \vee z$
(b) Draw the logical circuit diagram for

$$
\begin{equation*}
p_{1} \wedge\left[\left(p_{2} \vee p_{4}^{\prime}\right) \wedge\left(p_{3}^{\prime} \wedge\left(p_{1} \vee p_{4} \vee p_{3}^{\prime}\right)\right)\right] \wedge p_{2} \tag{7+7}
\end{equation*}
$$

Q. 3 (a) Find the cubic polynomial which takes the following values $f(x)$

x	0	1	2	3
$f(x)$	1	2	1	10

and hence evaluate $f(4)$ from the polynomial. Also calculate $f(4)$ using the same difference table and Newton's backward interpolation formula.
(b) Use Newton's divided difference interpolation formula to compute $f(15)$ from the following table

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

Q. 4 (a) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of time t second.

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and acceleration of the rod at $t=0.6$ second.
(b) Evaluate the length of the arc of the curve $3 y=x^{3}$ from $(0,0)$ to $(1,3)$ using Simpson's (1/3) rule taking 8 subintervals.
Q. 5 (a) Use Newton-Raphson method to find a root of the $x^{3}-6 x+4=0$ correct up to three decimal places.
(b) Draw schematically, how would you apply Merge-sort algorithm to sort the following array of numbers in increasing order.

15	5	64	8	12	11	4	33

Q. 6 (a) Apply Runge-Kutta method to find an approximate value of y at $x=0.2$ in steps of 0.1 , if $d y / d x=x+y^{2}$, given that $y=1$ at $x=0$.
(b) Show that the correlation coefficient $r_{x y}$ is bounded by $-1 \leq r_{x y} \leq 1$.
Q. 7 (a) Use Picard's method to find the solution of $d y / d x=x^{2}-y, y(0)=1$ for $x=0.2$
(b) Find the constants in $y=a+b x+c x^{2}$ using principle of least square curve fitting from the following data set:

x	0	1	2	3	4
y	-2.1	-0.4	2.1	3.6	9.9

Q. 8 (a) Starting with the linear equation $y=a+b x$ and the corresponding normal equations. Derive the regression equation of y on x as $y-\bar{y}=b_{y x}(x-\bar{x})$ where \bar{y}, \bar{x} are the means of the two variables and the regression coefficient $b_{y x}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x}^{2}}$.
(b) Using algebra of operators prove that

$$
\begin{equation*}
y_{x}=y_{n}-^{n-x} C_{1} \Delta y_{n-1}+{ }^{n-x} C_{2} \Delta^{2} y_{n-2}+\cdots \cdots+(-1)^{n-x} \Delta^{n-x} y_{n-(n-x)} \tag{7+7}
\end{equation*}
$$

